You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
5.6 KiB
166 lines
5.6 KiB
# -*- coding: utf-8 -*-
|
|
|
|
|
|
from itertools import product as cp
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
from google.cloud import translate_v2 as translate
|
|
from jellyfish import levenshtein_distance as lev
|
|
import nltk
|
|
import utils.constants as const
|
|
nltk.download('punkt')
|
|
|
|
translate_client = translate.Client()
|
|
|
|
'''
|
|
|
|
'''
|
|
|
|
def master_align(text0, text1, lang0, lang1):
|
|
""" Takes two equivalent texts (original and trnslation) and returns
|
|
aligned texts. """
|
|
df0 = frame_from_text(text0, lang0, lang1)
|
|
# print('A')
|
|
df1 = frame_from_text(text1, lang1, lang0, is1=True)
|
|
# print('B')
|
|
# returns dfs with ['sent', 'trans', 'rellen', 'relpos']
|
|
anchors = anchors_from_frames(df0, df1, window=2)
|
|
# print('C')
|
|
alignments = intermediate_align(df0, df1, anchors, lookahead=4)
|
|
# print('D')
|
|
textdict0, textdict1 = textdicts_from_alignments(df0, df1, alignments)
|
|
# print('E')
|
|
return textdict0, textdict1
|
|
|
|
|
|
def frame_from_text(text, source, target, is1=False): #
|
|
""" """ #
|
|
#print(source, '-->', target)
|
|
cols = [c+str(int(is1)) for c in ['sent','trans','rellen','relpos']]
|
|
#print(cols)
|
|
frame = pd.DataFrame(columns=cols)
|
|
frame[cols[0]] = nltk.sent_tokenize(text, language=const.LANGUAGE_NAME[source])
|
|
frame[cols[1]] = frame[cols[0]].apply(lambda x: translate_client.translate(x, source_language=source, target_language=target, model='nmt')['translatedText'])
|
|
frame[cols[2]] = frame[cols[0]].apply(lambda x: len(x))
|
|
frame[cols[2]] = frame[cols[2]]/frame[cols[2]].max()
|
|
cumul_b = list(np.cumsum(frame[cols[2]]))
|
|
cumul_a = [0]+cumul_b[:-1]
|
|
frame[cols[3]] = pd.Series(list(zip(cumul_a, cumul_b)))
|
|
#print(frame[[cols[0], cols[1]]])
|
|
return frame
|
|
|
|
|
|
def anchors_from_frames(frame0, frame1, window): #
|
|
""" """
|
|
pairdf = generate_pairdf(frame0, frame1, window)
|
|
frame0['index0'] = frame0.index
|
|
frame1['index1'] = frame1.index
|
|
pairdf = pairdf.merge(frame0, on='index0').merge(frame1, on='index1')
|
|
pairdf['lev0'] = pairdf.apply(lambda x: trdist(x.sent0, x.trans1), axis=1)
|
|
pairdf['lev1'] = pairdf.apply(lambda x: trdist(x.sent1, x.trans0), axis=1)
|
|
pairdf['rellen_ratio'] = (pairdf.rellen0/pairdf.rellen1).apply(gr1)
|
|
pairdf['minlev'] = pairdf[['lev0', 'lev1']].min(axis=1)
|
|
pairdf['maxlev'] = pairdf[['lev0', 'lev1']].min(axis=1)
|
|
pairdf['isanchor'] = (pairdf.minlev<0.45) & (pairdf.maxlev<0.6) & (pairdf.rellen_ratio<1.3)
|
|
return list(pairdf[pairdf.isanchor][['index0','index1']].values)
|
|
|
|
|
|
def intermediate_align(frame0, frame1, anchs, lookahead): #
|
|
""" """
|
|
aligns = []
|
|
end0, end1 = frame0.shape[0], frame1.shape[0]
|
|
anchor_ranges = list(zip([(-1,-1)]+anchs, anchs+[(end0, end1)]))
|
|
for rang in anchor_ranges:
|
|
interaligns = get_interalign(frame0, frame1, *rang, lookahead)
|
|
a,b = rang[0]
|
|
aligns.append(((a,b),(a,b)))
|
|
aligns.extend(interaligns)
|
|
return aligns[1:] # format [((i_start, i_end),(j_start, j_end))]
|
|
|
|
|
|
def get_interalign(df0, df1, anchors_init, anchors_next, lookahead): #
|
|
""" """
|
|
# print(anchors_init, anchors_next)
|
|
interaligns = []
|
|
i,j = anchors_init
|
|
i+=1
|
|
j+=1
|
|
end0, end1 = anchors_next
|
|
while i<end0 and j<end1:
|
|
room0, room1 = min(end0-i,lookahead), min(end1-j,lookahead)
|
|
lambdascore = lambda p,q: score(df0, df1, i, j, p, q)
|
|
i_,j_ = min([(x,y) for x,y in cp(range(i,i+room0),range(j,j+room1)) if x==i or y==j], key=lambda a: lambdascore(*a))
|
|
# print((i,j), (i_,j_))
|
|
interaligns.append(((i,j),(i_,j_)))
|
|
i,j = i_+1,j_+1
|
|
return interaligns
|
|
|
|
|
|
def score(frame0, frame1, start0, start1, end0, end1): #
|
|
#print(frame0.columns)
|
|
#print(frame1.columns)
|
|
s0 = ' '.join(frame0.loc[start0:end0, 'sent0'])
|
|
s1 = ' '.join(frame1.loc[start1:end1, 'sent1'])
|
|
t0 = ' '.join(frame0.loc[start0:end0, 'trans0'])
|
|
t1 = ' '.join(frame1.loc[start1:end1, 'trans1'])
|
|
l0 = sum(frame0.loc[start0:end0, 'rellen0'])
|
|
l1 = sum(frame1.loc[start1:end1, 'rellen1'])
|
|
#print(s0, s1, t0, t1, l0, l1)
|
|
return (trdist(s0,t1)+trdist(s1,t0))*gr1(l0/l1)/2
|
|
|
|
|
|
|
|
|
|
def textdicts_from_alignments(frame0, frame1, aligns): #
|
|
""" """
|
|
textdict0, textdict1 = {},{}
|
|
for i,((a0,a1),(b0,b1)) in enumerate(aligns):
|
|
t0 = ' '.join(frame0.loc[a0:b0, 'sent0'])
|
|
t1 = ' '.join(frame1.loc[a1:b1, 'sent1'])
|
|
# print('***************************')
|
|
# print(aligns[i])
|
|
# print(t0)
|
|
# print(t1)
|
|
textdict0.update({i:t0})
|
|
textdict1.update({i:t1})
|
|
return textdict0, textdict1
|
|
|
|
|
|
def generate_pairdf(frame0, frame1, window):
|
|
""" """
|
|
pairdf = pd.DataFrame(columns=['index0', 'index1'])
|
|
ranges0 = frame0.relpos0
|
|
ranges1 = frame1.relpos1
|
|
overlap = [(i,j) for (i,(a,b)),(j,(c,d)) in cp(enumerate(ranges0), enumerate(ranges1)) if get_overlap(a,b,c,d)>0]
|
|
len0 = frame0.shape[0]
|
|
len1 = frame1.shape[0]
|
|
allpairs = []
|
|
for i,j in overlap:
|
|
for k in range(-window, window+1):
|
|
for l in range(-window, window+1):
|
|
allpairs.append((i+k,j+l))
|
|
allpairs = [(a,b) for a,b in allpairs if min(a,b)>-1 and a<len0 and b<len1]
|
|
allpairs = sorted(list(set(allpairs)))
|
|
pairdf = pd.DataFrame(allpairs).rename(columns={0:'index0', 1:'index1'})
|
|
return pairdf
|
|
|
|
|
|
def get_overlap(a,b,c,d):
|
|
#print(a0,b0,a1,b1)
|
|
if b>c and b<=d:
|
|
return b-max(a,c)
|
|
elif a>=c and a<d:
|
|
return min(b,d)-a
|
|
elif c>=a and c<b:
|
|
return d-max(a,c)
|
|
else:
|
|
return 0
|
|
|
|
|
|
gr1 = lambda x: 1/less1(x) #
|
|
less1 = lambda x: 1/x if abs(x)>1 else x #
|
|
trdist = lambda x,y: lev(x,y)/max(len(x),len(y)) #
|
|
|
|
|