theta bias changed

isaac
Pavan Mandava 6 years ago
parent 6575ba0952
commit 3eb3f0f35e

@ -128,8 +128,8 @@ class MultiClassPerceptron:
# Dictionary for storing label->Perceptron() objects, Create a new Perceptron object for each label
for label in labels:
sample_weights = get_sample_weights_with_features(theta_bias=0.9, random_state=self.random_state)
self.perceptron_dict[label] = Perceptron(label, sample_weights, theta_bias=0.9)
sample_weights = get_sample_weights_with_features(theta_bias=-0.25, random_state=self.random_state)
self.perceptron_dict[label] = Perceptron(label, sample_weights, theta_bias=-0.25)
next_print = int(self.epochs/10)

@ -8,26 +8,35 @@ project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
train_file_path = project_root+'/data/tsv/train.tsv'
test_file_path = project_root+'/data/tsv/test.tsv'
# Read the training dataset
X_train_inst = read_csv_file(train_file_path, '\t')
# set of labels from Training data
labels = set([inst.true_label for inst in X_train_inst])
# Read test data set
X_test_inst = read_csv_file(test_file_path, '\t')
epochs = int(len(X_train_inst)*0.95)
# number of training iterations
epochs = int(len(X_train_inst)*0.9)
clf = MultiClassPerceptron(epochs=epochs, learning_rate=1, random_state=42)
# create MultiClassPerceptron classifier object
clf = MultiClassPerceptron(epochs=epochs, learning_rate=0.9, random_state=42)
# train the model
clf.fit(X_train=X_train_inst, labels=list(labels))
# predict
y_test = clf.predict(X_test_inst)
y_true = [inst.true_label for inst in X_test_inst]
# Model Evaluation
f1_score_micro = f1_score(y_true, y_test, labels, const.AVG_MICRO)
f1_score_macro = f1_score(y_true, y_test, labels, const.AVG_MACRO)
f1_score_none = f1_score(y_true, y_test, labels, None)
# f1_score_macro = f1_score(y_true, y_test, labels, const.AVG_MACRO)
# f1_score_none = f1_score(y_true, y_test, labels, None)
for result in f1_score_micro+f1_score_macro+f1_score_none:
# Print F1 Score
for result in f1_score_micro:
result.print_result()

Loading…
Cancel
Save