# citation-analysis Project repo for Computational Linguistics Team Laboratory at the University of Stuttgart ### **Evaluation** we plan to implement and use ***f1_score*** metric for evaluation of our classifier > F1 score is a weighted average of Precision and Recall(or Harmonic Mean between Precision and Recall). > The formula for F1 Score is: > F1 = 2 * (precision * recall) / (precision + recall) ```python eval.metrics.f1_score(y_true, y_pred, labels, average) ``` #### Parameters: **y_true** : 1-d array or list of gold class values **y_pred** : 1-d array or list of estimated values returned by a classifier **labels** : list of labels/classes **average**: string - [None, 'micro', 'macro'] If None, the scores for each class are returned.