from classifier.linear_model import MultiClassPerceptron from utils.csv import read_csv_file from eval.metrics import f1_score import utils.constants as const import os project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) train_file_path = project_root+'/data/tsv/train.tsv' test_file_path = project_root+'/data/tsv/test.tsv' X_train_inst = read_csv_file(train_file_path, '\t') labels = set([inst.true_label for inst in X_train_inst]) X_test_inst = read_csv_file(test_file_path, '\t') epochs = int(len(X_train_inst)*0.75) clf = MultiClassPerceptron(epochs, 1) clf.fit(X_train=X_train_inst, labels=list(labels)) y_test = clf.predict(X_test_inst) y_true = [inst.true_label for inst in X_test_inst] f1_score_list = f1_score(y_true, y_test, labels, const.AVG_MICRO) for result in f1_score_list: result.print_result()