\documentclass[ xcolor={svgnames}, hyperref={colorlinks,citecolor=DeepPink4,linkcolor=DarkRed,urlcolor=DarkBlue} ]{beamer} % define using customized theme. \usetheme{pas} % define using packages \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} % the general information. \title[Largest Prime Number?] % (optional, only for long titles) {Citation Analysis} \subtitle{Classifying Links between Scientific Publications} \author[tmip, hieutt] % (optional, for multiple authors) {Pavan Mandava and Isaac Riley} \institute[Universities Here and There] % (optional) { \inst{1}% Computational Linguistics, M.Sc.\\ \and \inst{2}% Computational Linguistics, M.Sc.\\ } \date[] % (optional) {May 20, 2020} \subject{Computational Linguistics} % begin presentation content \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{There Is No Largest Prime Number} \framesubtitle{The proof uses \textit{reductio ad absurdum}.} \begin{theorem} There is no largest prime number. \end{theorem} \begin{enumerate} \item<1-| alert@1> Suppose $p$ were the largest prime number. \item<2-> Let $q$ be the product of the first $p$ numbers. \item<3-> Then $q+1$ is not divisible by any of them. \item<1-> But $q + 1$ is greater than $1$, thus divisible by some prime number not in the first $p$ numbers. \end{enumerate} \end{frame} \begin{frame}{A longer title} \begin{itemize} \item one \item two \end{itemize} \end{frame} \begin{frame}[allowframebreaks] \frametitle{References} \bibliographystyle{plain} \bibliography{lib} \end{frame} \end{document}