\documentclass[ xcolor={svgnames}, hyperref={colorlinks,citecolor=DeepPink4,linkcolor=DarkRed,urlcolor=DarkBlue} ]{beamer} % define using customized theme. \usetheme{pas} % define using packages \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage {minted} % the general information. \title[] % (optional, only for long titles) {Citation Intent Classification} \subtitle{Identifying the Intent of a Citation in scientific papers} \author[tmip, hieutt] % (optional, for multiple authors) {Isaac Riley and Pavan Mandava} \institute[Universities Here and There] % (optional) { \inst{1}% Computational Linguistics, M.Sc.\\ \and \inst{2}% Computational Linguistics, M.Sc.\\ } \date[] % (optional) {May 20, 2020} \subject{Computational Linguistics} % begin presentation content \begin{document} %%%% Slide : 1 -- INTRO \begin{frame} \titlepage \end{frame} %%%% TASK DESCRIPTION ----- Slide 2 \begin{frame} \frametitle{Task Description} \begin{itemize} \item Identifying intent of a citation in scientific papers \bigskip \item Three Intent categories/classes from the data set \begin{enumerate} \item background (background information) \item method (use of methods/tools) \item result (comparing results) \end{enumerate} \bigskip \item {\bf Classification Task } \begin{itemize} \item Assign a discrete class (intent) for each data point \end{itemize} \end{itemize} \end{frame} %%%% DATA SET ---- Slide 3 \begin{frame} \frametitle{Data set} \begin{itemize} \item Training Data: 8.2K+ data points \begin{enumerate} \item background - 4.8K \item method - 2.3K \item result - 1.1K \end{enumerate} \item Testing Data: 1.8K data points \begin{enumerate} \item background - 1K \item method - 0.6K \item result - 0.2K \end{enumerate} \end{itemize} \begin{table} \begin{tabular}{| l | c | c} \hline 4 lead to a decrease in SC absorption in mice & \\ (Deng et al., 2010; Deng et al., 2012). & background \\ \hline We used an active contour algorithm [10] to segment & \\ organs from 340 coronal slices over the two patients. & method \\ \hline Similar results were found by Sideris et al. (1999) in & \\ Greece and Mohebali et al. (2005) in Iran. & result \\ \hline \end{tabular} \caption{Sample Dataset} \end{table} \end{frame} %%%% Approach/Architectures ---- Slide 4 \begin{frame}[fragile] \frametitle{Approach \& Architecture} \framesubtitle{Classifier Implementation} Base Classifier: {\bf {\color{red} Perceptron}} \begin{itemize} \item Linear Classifier \item Binary Classifier \end{itemize} \begin{minted}[autogobble, breaklines,breakanywhere, fontfamily=helvetica, fontsize=\small]{python} class Perceptron: def __init__(self, label: str, weights: dict, theta_bias: float) def score(self, features: list) def update_weights(self, features: list, learning_rate: float, penalize: bool, reward: bool) class MultiClassPerceptron: def __init__(self, epochs: int,learning_rate: float,random_state: int) def fit(self, X_train: list, labels: list) def predict(self, X_test: list) \end{minted} \bigskip - {\bf Parameters} and {\bf Hyperparameters} \end{frame} %%%% Approach/Architectures ---- Slide 5 \begin{frame}[fragile] \frametitle{Approach \& Architecture} \framesubtitle{Feature Representation} Lexicons and Regular Expressions ($\approx$ 30 Features) \bigskip \begin{itemize} \item LEXICONS \begin{minted}[autogobble, breaklines,breakanywhere, fontfamily=helvetica, fontsize=\small]{python} ALL_LEXICONS = { 'INCREASE': ['increase', 'grow', 'intensify', 'build up', 'explode'], 'USE': ['use', 'using', 'apply', 'applied', 'employ', 'make use'], ..... } \end{minted} \bigskip \item REGEX \begin{itemize} \item $ACRONYM$ \item $CONTAINS\_URL$ \item $ENDS\_WITH\_ETHYL$ \end{itemize} \end{itemize} \end{frame} %%%% Evaluation ---- Slide 6 \begin{frame}[fragile] \frametitle{Evaluation of the Classifier} \framesubtitle{F1 Score} \bigskip \begin{itemize} \item F1 Score \begin{itemize} \item weighted average of Precision and Recall \end{itemize} \bigskip \begin{minted}[autogobble, breaklines,breakanywhere, fontfamily=helvetica]{python} def f1_score(y_true, y_pred, labels, average) \end{minted} \bigskip \item Averaging \begin{itemize} \item MACRO \item MICRO \item None \end{itemize} \bigskip \item Why {\color{red} MACRO} and {\color{red}MICRO} ? \end{itemize} \end{frame} %%%% Results ---- Slide 7 \begin{frame} \frametitle{Model Performance} \framesubtitle{Results} \begin{table} \def\arraystretch{1.5} {\setlength{\tabcolsep}{2em} \begin{tabular}{| l | c | c |} \hline {\bf Averaging} & {\bf Score} \\ \hline \hline MICRO & 0.64 \\ \hline MACRO & 0.57 \\ \hline background & 0.72 \\ method & 0.54 \\ result & 0.46 \\ \hline \end{tabular}} \caption{F1-Score Results} \end{table} \end{frame} %%%% Next Steps ---- Slide 8 \begin{frame} \frametitle{Next Steps} \begin{itemize} \item Better Feature Representation - Word Embeddings \begin{itemize} \item word2vec \item BERT \item ELMo \item \dots{} \end{itemize} \item Better Classifier (Non-Linear / Neural Networks) \begin{itemize} \item BiRNNs \item BiLSTMs \item CNNs \item \dots{} \end{itemize} \item Interaction with other groups \end{itemize} \end{frame} %%%% THANK YOU -- Slide 9 \begin{frame} \usebeamerfont{frametitle}\usebeamercolor[fg]{frametitle} \centering \Large Thanks for listening \end{frame} \end{document}