You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

240 lines
5.0 KiB

\documentclass[
xcolor={svgnames},
hyperref={colorlinks,citecolor=DeepPink4,linkcolor=DarkRed,urlcolor=DarkBlue}
]{beamer}
% define using customized theme.
\usetheme{pas}
% define using packages
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage {minted}
% the general information.
\title[] % (optional, only for long titles)
{Citation Intent Classification}
\subtitle{Identifying the Intent of a Citation in scientific papers}
\author[tmip, hieutt] % (optional, for multiple authors)
{Isaac Riley and Pavan Mandava}
\institute[Universities Here and There] % (optional)
{
\inst{1}%
Computational Linguistics, M.Sc.\\
\and
\inst{2}%
Computational Linguistics, M.Sc.\\
}
\date[] % (optional)
{May 20, 2020}
\subject{Computational Linguistics}
% begin presentation content
\begin{document}
%%%% Slide : 1 -- INTRO
\begin{frame}
\titlepage
\end{frame}
%%%% TASK DESCRIPTION ----- Slide 2
\begin{frame}
\frametitle{Task Description}
\begin{itemize}
\item Identifying intent of a citation in scientific papers
\bigskip
\item Three Intent categories/classes from the data set
\begin{enumerate}
\item background (background information)
\item method (use of methods/tools)
\item result (comparing results)
\end{enumerate}
\bigskip
\item {\bf Classification Task }
\begin{itemize}
\item Assign a discrete class (intent) for each data point
\end{itemize}
\end{itemize}
\end{frame}
%%%% DATA SET ---- Slide 3
\begin{frame}
\frametitle{Data set}
\begin{itemize}
\item Training Data: 8.2K+ data points
\begin{enumerate}
\item background - 4.8K
\item method - 2.3K
\item result - 1.1K
\end{enumerate}
\bigskip
\item Testing Data: 1.8K data points
\begin{enumerate}
\item background - 1K
\item method - 0.6K
\item result - 0.2K
\end{enumerate}
\end{itemize}
\end{frame}
%%%% Approach/Architectures ---- Slide 4
\begin{frame}[fragile]
\frametitle{Approach \& Architecture}
\framesubtitle{Classifier Implementation}
Base Classifier: {\bf {\color{red} Perceptron}}
\begin{itemize}
\item Linear Classifier
\item Binary Classifier
\end{itemize}
\begin{minted}[autogobble, breaklines,breakanywhere, fontfamily=helvetica, fontsize=\small]{python}
class Perceptron:
def __init__(self, label: str, weights: dict, theta_bias: float)
def score(self, features: list)
def update_weights(self, features: list, learning_rate: float, penalize: bool, reward: bool)
class MultiClassPerceptron:
def __init__(self, epochs: int,learning_rate: float,random_state: int)
def fit(self, X_train: list, labels: list)
def predict(self, X_test: list)
\end{minted}
\bigskip
- {\bf Parameters} and {\bf Hyperparameters}
\end{frame}
%%%% Approach/Architectures ---- Slide 5
\begin{frame}[fragile]
\frametitle{Approach \& Architecture}
\framesubtitle{Feature Representation}
Lexicons and Regular Expressions ($\approx$ 30 Features)
\bigskip
\begin{itemize}
\item LEXICONS
\begin{minted}[autogobble, breaklines,breakanywhere, fontfamily=helvetica, fontsize=\small]{python}
ALL_LEXICONS = {
'INCREASE': ['increase', 'grow', 'intensify', 'build up', 'explode'],
'USE': ['use', 'using', 'apply', 'applied', 'employ', 'make use'],
.....
}
\end{minted}
\bigskip
\item REGEX
\begin{itemize}
\item $ACRONYM$
\item $CONTAINS\_URL$
\item $ENDS\_WITH\_ETHYL$
\end{itemize}
\end{itemize}
\end{frame}
%%%% Evaluation ---- Slide 6
\begin{frame}[fragile]
\frametitle{Evaluation of the Classifier}
\framesubtitle{F1 Score}
\bigskip
\begin{itemize}
\item F1 Score
\begin{itemize}
\item weighted average of Precision and Recall
\end{itemize}
\bigskip
\begin{minted}[autogobble, breaklines,breakanywhere, fontfamily=helvetica]{python}
def f1_score(y_true, y_pred, labels, average)
\end{minted}
\bigskip
\item Averaging
\begin{itemize}
\item MACRO
\item MICRO
\item None
\end{itemize}
\bigskip
\item Why {\color{red} MACRO} and {\color{red}MICRO} ?
\end{itemize}
\end{frame}
%%%% Results ---- Slide 7
\begin{frame}
\frametitle{Model Performance}
\framesubtitle{Results}
\begin{table}
\def\arraystretch{1.5}
{\setlength{\tabcolsep}{2em}
\begin{tabular}{| l | c | c |} \hline
{\bf Averaging} & {\bf Score} \\
\hline \hline
MICRO & 0.64 \\
\hline
MACRO & 0.57 \\
\hline
background & 0.72 \\
method & 0.54 \\
result & 0.46 \\
\hline
\end{tabular}}
\caption{F1-Score Results}
\end{table}
\end{frame}
%%%% Next Steps ---- Slide 8
\begin{frame}
\frametitle{Next Steps}
\begin{itemize}
\item Better Feature Representation - Word Embeddings
\begin{itemize}
\item word2vec
\item BERT
\item ELMo
\item \dots{}
\end{itemize}
\item Better Classifier (Non-Linear / Neural Networks)
\begin{itemize}
\item BiRNNs
\item BiLSTMs
\item CNNs
\item \dots{}
\end{itemize}
\item Interaction with other groups
\end{itemize}
\end{frame}
%%%% THANK YOU -- Slide 9
\begin{frame}
\usebeamerfont{frametitle}\usebeamercolor[fg]{frametitle}
\centering \Large
Thanks for listening
\end{frame}
\end{document}