You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

76 lines
2.2 KiB

"""
Simple feed-forward neural network in PyTorch for baseline results on Scicite data.
Date: July 5th, 2020
"""
import torch
from utils.nn_reader import read_csv_nn
class Feedforward(torch.nn.Module):
"""
Creates and trains a basic feedforward neural network.
"""
def __init__(self, input_size, hidden_size, output_size):
""" Sets up all basic elements of NN. """
super(Feedforward, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.fc1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(self.hidden_size, self.output_size)
self.sigmoid = torch.nn.Sigmoid()
self.softmax = torch.nn.Softmax(dim=1)
def forward(self, x):
""" Computes output from a given input x. """
hidden = self.fc1(x)
relu = self.relu(hidden)
output = self.fc2(relu)
output = self.softmax(output)
return output
if __name__=='__main__':
""" Reads in the data, then trains and evaluates the neural network. """
X_train, y_train, X_test = read_csv_nn()
X_train = torch.FloatTensor(X_train)
X_test = torch.FloatTensor(X_test)
y_train_ = torch.FloatTensor(y_train)
y_train = torch.max(torch.FloatTensor(y_train_),1)[1]
model = Feedforward(28, 9, 3)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)
model.eval()
y_pred = model(X_train)
before_train = criterion(y_pred, y_train)
print('Test loss before training' , before_train.item())
model.train()
epoch = 2000
for epoch in range(epoch):
optimizer.zero_grad()
# forward pass
y_pred = model(X_train)
loss = criterion(y_pred, y_train)
print('Epoch {}: train loss: {}'.format(epoch, loss.item()))
# backward pass
loss.backward()
optimizer.step()
model.eval()
y_pred = model(X_train)
after_train = criterion(y_pred, y_train)
print('Training loss after training' , after_train.item())