You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

71 lines
1.6 KiB

\documentclass[
xcolor={svgnames},
hyperref={colorlinks,citecolor=DeepPink4,linkcolor=DarkRed,urlcolor=DarkBlue}
]{beamer}
% define using customized theme.
\usetheme{pas}
% define using packages
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
% the general information.
\title[Largest Prime Number?] % (optional, only for long titles)
{Citation Analysis}
\subtitle{Classifying Links between Scientific Publications}
\author[tmip, hieutt] % (optional, for multiple authors)
{Pavan Mandava and Isaac Riley}
\institute[Universities Here and There] % (optional)
{
\inst{1}%
Computational Linguistics, M.Sc.\\
\and
\inst{2}%
Computational Linguistics, M.Sc.\\
}
\date[] % (optional)
{May 20, 2020}
\subject{Computational Linguistics}
% begin presentation content
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{There Is No Largest Prime Number}
\framesubtitle{The proof uses \textit{reductio ad absurdum}.}
\begin{theorem}
There is no largest prime number. \end{theorem}
\begin{enumerate}
\item<1-| alert@1> Suppose $p$ were the largest prime number.
\item<2-> Let $q$ be the product of the first $p$ numbers.
\item<3-> Then $q+1$ is not divisible by any of them.
\item<1-> But $q + 1$ is greater than $1$, thus divisible by some prime
number not in the first $p$ numbers.
\end{enumerate}
\end{frame}
\begin{frame}{A longer title}
\begin{itemize}
\item one
\item two
\end{itemize}
\end{frame}
\begin{frame}[allowframebreaks]
\frametitle{References}
\bibliographystyle{plain}
\bibliography{lib}
\end{frame}
\end{document}