You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

22 lines
982 B

from eval.metrics import f1_score
import utils.constants as const
from sklearn.metrics import f1_score as f1
y_true = ['positive', 'positive', 'negative', 'negative', 'positive', 'positive', 'negative', 'negative', 'positive', 'positive', 'negative', 'negative', 'positive', 'positive', 'negative', 'negative']
y_pred = ['positive', 'negative', 'negative', 'positive', 'positive', 'negative', 'negative', 'positive', 'positive', 'negative', 'negative', 'positive', 'positive', 'negative', 'negative', 'negative']
result_list = f1_score(y_true, y_pred, ['positive', 'negative'], None)
for result in result_list:
result.print_result()
print('SK Learn F1 Score (MICRO):: ', f1(y_true, y_pred, ['positive', 'negative'], average='micro'))
result_list = f1_score(y_true, y_pred, ['positive', 'negative'], const.AVG_MACRO)
for result in result_list:
result.print_result()
print('SK Learn F1 Score (MACRO):: ', f1(y_true, y_pred, ['positive', 'negative'], average='macro'))