You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

43 lines
1.2 KiB

from classifier.linear_model import MultiClassPerceptron
from utils.csv import read_csv_file
from eval.metrics import f1_score
import utils.constants as const
import os
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
train_file_path = project_root+'/data/tsv/train.tsv'
test_file_path = project_root+'/data/tsv/test.tsv'
# Read the training dataset
X_train_inst = read_csv_file(train_file_path, '\t')
# set of labels from Training data
labels = set([inst.true_label for inst in X_train_inst])
# Read test data set
X_test_inst = read_csv_file(test_file_path, '\t')
# number of training iterations
epochs = int(len(X_train_inst)*0.9)
# create MultiClassPerceptron classifier object
clf = MultiClassPerceptron(epochs=epochs, learning_rate=0.9, random_state=42)
# train the model
clf.fit(X_train=X_train_inst, labels=list(labels))
# predict
y_test = clf.predict(X_test_inst)
y_true = [inst.true_label for inst in X_test_inst]
# Model Evaluation
f1_score_micro = f1_score(y_true, y_test, labels, const.AVG_MICRO)
# f1_score_macro = f1_score(y_true, y_test, labels, const.AVG_MACRO)
# f1_score_none = f1_score(y_true, y_test, labels, None)
# Print F1 Score
for result in f1_score_micro:
result.print_result()