You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

128 lines
4.7 KiB

"""
Simple feed-forward neural network in PyTorch for baseline results on Scicite data.
Created: July 5th, 2020
"""
import torch
from utils.nn_reader import read_csv_nn
import numpy as np
class FeedForward(torch.nn.Module):
"""
Creates and trains a basic feedforward neural network.
"""
def __init__(self, input_size, hidden_size, output_size):
""" Sets up all basic elements of NN. """
super(FeedForward, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.fc1 = torch.nn.Linear(self.input_size, self.hidden_size)
self.tanh = torch.nn.Tanh()
self.fc2 = torch.nn.Linear(self.hidden_size, self.output_size)
self.sigmoid = torch.nn.Sigmoid()
self.softmax = torch.nn.Softmax(dim=1)
def forward(self, x):
""" Computes output from a given input x. """
hidden = self.fc1(x)
tanh = self.tanh(hidden)
output = self.fc2(tanh)
output = self.softmax(output)
return output
def read_data(self):
"""" Reads in training and test data and converts it to proper format. """
self.X_train_, self.y_train_, self.X_test_ = read_csv_nn()
yclass = np.array([(x[1] == 1) + 2 * (x[2] == 1) for x in self.y_train_])
is0 = yclass == 0
is1 = yclass == 1
is2 = yclass == 2
self.X0 = torch.FloatTensor(self.X_train_[is0])
self.X1 = torch.FloatTensor(self.X_train_[is1])
self.X2 = torch.FloatTensor(self.X_train_[is2])
self.y0 = torch.LongTensor(np.zeros((sum(is0),)))
self.y1 = torch.LongTensor(np.ones((sum(is1),)))
self.y2 = torch.LongTensor(2 * np.ones((sum(is2),)))
self.l0 = sum(is0)
self.l1 = sum(is1)
self.l2 = sum(is2)
def fit(self, epochs=100, batch_size=16, lr=0.01, samples0=1000, samples1=1000, samples2=1000):
""" Trains model, using cross entropy loss and SGD optimizer. """
self.criterion = torch.nn.CrossEntropyLoss()
self.optimizer = torch.optim.SGD(self.parameters(), lr)
self.samples0 = samples0
self.samples1 = samples1
self.samples2 = samples2
self.eval() # put into eval mode
# initialize training data
self.shuffle()
y_pred = self.forward(self.X_train)
before_train = self.criterion(y_pred, self.y_train)
print('Test loss before training', before_train.item())
# setup for batches
l = self.samples0 + self.samples1 + self.samples2 # total length
batch_indices = list(zip(list(range(0, l, batch_size))[:-1], list(range(16, l, batch_size))))
batch_indices[-1] = (batch_indices[-1][0], l)
# train model
self.train() # put into training mode
for epoch in range(epochs):
batch = 0
for a, b in batch_indices:
self.optimizer.zero_grad()
# forward pass
y_pred = self.forward(self.X_train[a:b])
loss = self.criterion(y_pred, self.y_train[a:b])
# backward pass
loss.backward()
self.optimizer.step()
batch += 1
# get loss following epoch
y_pred = self.forward(self.X_train)
loss = self.criterion(y_pred, self.y_train)
print('Epoch {}: train loss: {}'.format(epoch, loss.item()))
# shuffle dataset
self.shuffle()
# display final loss
self.eval() # back to eval mode
y_pred = self.forward(self.X_train)
after_train = self.criterion(y_pred, self.y_train)
print('Training loss after training', after_train.item())
def predict(self):
""" Generates predictions from model, using test data. """
# post-process to get predictions & get back to np format
y_pred = self.forward(self.X_test)
y_pred_np = y_pred.detach().numpy()
predmax = np.amax(y_pred_np, axis=1)
self.preds = 1 * (y_pred_np[:, 1] == predmax) + 2 * (y_pred_np[:, 2] == predmax)
self.probs = y_pred.detach().numpy()
def shuffle(self):
""" Samples and shuffles training data. """
# create permutations for shuffling
p0 = torch.randperm(self.l0)
p1 = torch.randperm(self.l1)
p2 = torch.randperm(self.l2)
n = self.l0 + self.l1 + self.l2
p = torch.randperm(n)
# sample and shuffle data
self.X_train = \
torch.cat((self.X0[p0][:self.samples0], self.X1[p1][:self.samples1], self.X2[p2][:self.samples2]))[p]
self.y_train = torch.cat((self.y0[:self.samples0], self.y1[:self.samples1], self.y2[:self.samples2]))[p]