diff --git a/presentation/latex/talk.pdf b/presentation/latex/talk.pdf index b5d9a3b..f487d0b 100644 Binary files a/presentation/latex/talk.pdf and b/presentation/latex/talk.pdf differ diff --git a/presentation/latex/talk.tex b/presentation/latex/talk.tex index 7946f21..7f787ed 100644 --- a/presentation/latex/talk.tex +++ b/presentation/latex/talk.tex @@ -86,7 +86,6 @@ \begin{itemize} \item Ontology of domains \begin{itemize} - \item Represents knowledge \& information required for specific tasks \item Contains pre-defined set of slots and all possible values for each slot \item Some Neural-based models solve the DST as classification task \end{itemize} @@ -113,7 +112,6 @@ \begin{itemize} \item New way of efficiently using the generation capabilities of PLMs to solve different language tasks \item Downstream task is converted to a textual prompt and given as input, the PLM directly generates the outputs from prompts - \item Prompting methods can be effectively used under \textsl{zero-shot} and \textsl{few-shot} settings when there's not enough training data \item GPT-3 \parencite{brown2020gpt3}, Few-shot Bot \parencite{madotto2021fsb}, \textsc{PET} \parencite{schick2021pet} explored prompt-based methods for several tasks \end{itemize} \end{itemize} @@ -128,7 +126,6 @@ \end{figure} \vspace{-4pt} \begin{itemize} - \item Prompt Types: \textsl{prefix} \& \textsl{cloze} prompts \item Prompt selection: manual, discrete, \& continuous prompts \item Training strategy: Fixed-prompt LM Fine Tuning \begin{itemize} @@ -159,8 +156,7 @@ \end{itemize} \item Research Objectives \begin{itemize} - \item Can the dialog states be extracted from the PLM using prompts? - \item Can the prompt-based methods learn the DST task under low-resource settings without depending on the ontology of domains? + \item Can the prompt-based methods learn the DST task efficiently under low-resource settings without depending on the ontology? \item Compare prompt-based approach with the baseline model \item Identify the drawbacks \& limitations of prompt-based approach \item Can different multi-prompt techniques help improve the performance of DST task? @@ -184,7 +180,6 @@ \item Six data splits are created to perform few-shot experiments \begin{itemize} \item Different proportions of dialogues in each split - \item All the five domains are evenly distributed in each split \end{itemize} \end{itemize} @@ -253,9 +248,7 @@ \end{table} \begin{itemize} - \item The pre-trained Soloist is used to fine-tune the prompting methods - \item All MultiWOZ data splits are used in the fine-tuning phase \item Loss function for value-based prompt $$\mathcal{L}=-\sum_{t}^{|D|} \log P\left(s_{t} \mid c_{t}, f\left(v_{t}\right)\right)$$ \item Loss function for inverse prompt @@ -435,7 +428,7 @@ \end{block} \begin{itemize} - \item Open-ended generation + %% \item Open-ended generation \item Susceptible to generating random slot-value pairs \item Repeated slot-value generations \item From the above example: diff --git a/presentation/presentation.pdf b/presentation/presentation.pdf index b5d9a3b..f487d0b 100644 Binary files a/presentation/presentation.pdf and b/presentation/presentation.pdf differ