#!/bin/bash usage="$(basename "$0") [-d ] Argument -d takes (few-shot) data split names. Possible data-split names : 50-dpd|100-dpd|125-dpd|250-dpd" while getopts :d: flag do case "${flag}" in d) data_split=${OPTARG};; :) printf "missing argument for -%s\n" "$OPTARG" >&2; echo "$usage" >&2; exit 1;; esac done # check for mandatory/required -d argument # mandatory arguments if [ ! "$data_split" ]; then echo "arguments -d must be provided" echo "$usage" >&2; exit 1 fi # Check whether the required environment vars are set if [ -z "${SAVED_MODELS_PROMPT}" ]; then echo "Must set SAVED_MODELS_PROMPT in environment, run set_env.sh first!"; exit 1 fi # Check whether the required environment vars are set if [ -z "${PRE_TRAINED_SOLOIST}" ]; then echo "Pre-trained SOLOIST Model path must be provided!"; echo "Must set PRE_TRAINED_SOLOIST in environment, run set_env.sh first!"; exit 1 fi # check if the training data file exists TRAIN_DATA_FILE=../data/prompt-learning/"${data_split}"/train.soloist.json if [ -f "$TRAIN_DATA_FILE" ]; then echo "Selected Training set :: ${data_split}/train.soloist.json" else echo "Training File with set ${data_split} does not exist." exit 1 fi # create experiment folder for storing saved models datetime_now=$(date +"%Y%m%dT%H%M%S") experiment_folder="${data_split}"/experiment-${datetime_now} SAVE_DIR="${SAVED_MODELS_PROMPT}"/"${experiment_folder}" echo "Trained Models (checkpoints/epochs) are saved in ${SAVE_DIR}" python prompt_train.py \ --save_model_dir="${SAVE_DIR}" \ --pretrained_model_path="${PRE_TRAINED_SOLOIST}" \ --train_data_file="${TRAIN_DATA_FILE}" \ --validation_file=../data/prompt-learning/valid/valid.soloist.json \ --num_epochs 10 \ --learning_rate 5e-5 \ --with_inverse_prompt \ --inverse_prompt_weight 0.1