commit
bef0a64b41
@ -0,0 +1,143 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
|
||||
import os,sys
|
||||
import re
|
||||
import pandas as pd
|
||||
from numpy import cumsum
|
||||
from pandas import DataFrame
|
||||
from nltk import word_tokenize, sent_tokenize
|
||||
import xml.etree.ElementTree as ET
|
||||
from jellyfish import levenshtein_distance as lev
|
||||
import six
|
||||
from google.cloud import translate_v2 as translate
|
||||
from itertools import product as cp
|
||||
|
||||
translate_client = translate.Client()
|
||||
|
||||
'''
|
||||
|
||||
'''
|
||||
|
||||
|
||||
|
||||
def master_align(text0, text1, lang0, lang1):
|
||||
""" Takes two equivalent texts (original and trnslation) and returns
|
||||
aligned texts. """
|
||||
df0 = frame_from_text(text0, source=lang0, target=lang1)
|
||||
df1 = frame_from_text(text1, source=lang1, target=lang0, is1=True)
|
||||
# returns dfs with ['sent', 'trans', 'rellen', 'relpos']
|
||||
anchors = anchors_from_frames(df0, df1, score_funct, score_threshold, window=2)
|
||||
alignments = intermediate_align(df0, df1, anchors, lookahead=4)
|
||||
textdict0, textdict1 = textdicts_from_alignments(df0, df1, alignments)
|
||||
return textdict0, textdict1
|
||||
|
||||
|
||||
def frame_from_text(text, source='ru', target='en', is0=True): #
|
||||
""" """ #
|
||||
cols = [c+str(int(is1)) for c in ['sent','trans','rellen','relpos']]
|
||||
frame = pd.DataFrame(colmns=cols)
|
||||
frame[cols[0]] = sent_tokenize(text)
|
||||
frame[cols[1]] = frame[cols[0]].apply(lambda x: translate_client.translate(x, source_language=source, target_language=target, model='nmt')['translatedText'])
|
||||
frame[cols[2]] = frame[cols[0]].apply(lambda x: len(x))
|
||||
frame[cols[2]] = frame[cols[2]]/frame[cols[2]].max()
|
||||
cumul_b = list(np.cumsum(frame[cols[2]]))
|
||||
cumul_a = [0]+cumul_b[:-1]
|
||||
frame[cols[3]] = pd.Series(list(zip(cumul_a, cumul_b)))
|
||||
return frame
|
||||
|
||||
|
||||
def anchors_from_frames(frame0, frame1, window): #
|
||||
""" """
|
||||
pairdf = generate_pairdf(frame0, frame1, window)
|
||||
pairdf['lev0'] = pairdf[['sent0', 'trans1']].apply(lambda x: trdist(x.sent0, x.trans1))
|
||||
pairdf['lev1'] = pairdf[['sent1', 'trans0']].apply(lambda x: trdist(x.sent1, x.trans0))
|
||||
pairdf['rellen_ratio'] = (pairdf.rellen0/pairdf.rellen1).apply(gr1)
|
||||
pairdf['minlev'] = pairdf[['lev0', 'lev1']].min(axis=1)
|
||||
pairdf['maxlev'] = pairdf[['lev0', 'lev1']].min(axis=1)
|
||||
pairdf['isanchor'] = pairdf.minlev<045 & pairdf.maxlev<0.6 & pairdf.rellen_ratio<1.3
|
||||
return pairdf[pairdf.isanchor][['index0','index1']]
|
||||
|
||||
|
||||
def intermediate_align(frame0, frame1, anchs, lookahead): #
|
||||
""" """
|
||||
aligns = []
|
||||
end0, end1 = frame0.shape[0], frame1.shape[0]
|
||||
anchor_ranges = lis(zip([(-1,-1)]+anchs, anchs+[(end0, end1)]))
|
||||
for rang in anchor_ranges:
|
||||
interaligns = get_interalign(frame0, frame1, *rang, lookahead)
|
||||
aligns.append(rang[0])
|
||||
aligns.extend(interaligns)
|
||||
return aligns[1:] # format [((i_start, i_end),(j_start, j_end))]
|
||||
|
||||
|
||||
def get_interalign(df0, df1, anchors_init, anchors_next, lookahead): #
|
||||
""" """
|
||||
interaligns = []
|
||||
i,j = anchors_init
|
||||
i+=1
|
||||
j+=1
|
||||
end0, end1 = anchors_next
|
||||
while i<end0 and j<end1:
|
||||
room0, room1 = min(end0-i,lookahead), min(end1-j,lookahead)
|
||||
best_alignment = min([(x,y) for x,y in cp(range(i,i+room0),range(j+room1)) if x==i or y==j], key=score(df0, df1, start0, start1, end0, end1))
|
||||
interaligns.append((best_alignment))
|
||||
return interaligns
|
||||
|
||||
|
||||
def score(frame0, frame1, start0, start1, end0, end1): #
|
||||
s0 = ' '.join(frame0.loc[start0:end0+1, 'sent0'])
|
||||
s1 = ' '.join(frame0.loc[start1:end1+1, 'sent1'])
|
||||
t0 = ' '.join(frame0.loc[start0:end0+1, 'trans0'])
|
||||
t1 = ' '.join(frame0.loc[start1:end1+1, 'trans1'])
|
||||
l0 = sum(frame0.loc[start0:end0+1, 'rellen0'])
|
||||
l1 = sum(frame1.loc[start1:end1+1, 'rellen1'])
|
||||
return (lev(s0,t1)+lev(s1,t0))*gr1(l0/l1)/2
|
||||
|
||||
|
||||
|
||||
|
||||
def textdicts_from_alignments(frame0, frame1, aligns): #
|
||||
""" """
|
||||
textdict0, textdict1 = {},{}
|
||||
for i,((a0,b0),(a1,b1)) in enumerate(aligns):
|
||||
t0 = ' '.join(frame0.loc[a0:b0+1, 'sent0'])
|
||||
t1 = ' '.join(frame0.loc[a1:b1+1, 'sent0'])
|
||||
textdict0.update({i:t0})
|
||||
textdict1.update({i:t1})
|
||||
return textdict0, textdict1
|
||||
|
||||
|
||||
def generate_pairdf(frame0, frame1, window):
|
||||
""" """
|
||||
pairdf = pd.DataFrame(columns=['index0', 'index1'])
|
||||
ranges0 = frame0.relpos0
|
||||
ranges1 = frame1.relpos1
|
||||
overlap = [i,j for (i,(a,b)),(j,(c,d)) in cp(enumerate(ranges0), enumerate(ranges1)) if get_overlap(a,b,c,d)>0]
|
||||
allpairs = []
|
||||
for i,j in overlap:
|
||||
for k in range(-window:window+1):
|
||||
for l in range(-window:window+1):
|
||||
allpairs.append()
|
||||
allpairs = sorted(list(set(allpairs)))
|
||||
pairdf[pairdf.columns] = pd.DataFrame(allpairs).values
|
||||
return pairdf
|
||||
|
||||
|
||||
def get_overlap(a,b,c,d):
|
||||
#print(a0,b0,a1,b1)
|
||||
if b0>a1 and b0<=b1:
|
||||
return b0-max(a0,a1)
|
||||
elif a0>=a1 and a0<b1:
|
||||
return min(b0,b1)-a0
|
||||
elif a1>=a0 and a1<b0:
|
||||
return b1-max(a0,a1)
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
gr1 = lambda x: 1/less1(x) #
|
||||
less1 = lambda x: 1/x if abs(x)>1 else x #
|
||||
trdist = lambda x,y: lev(x,y)/max(x,y) #
|
||||
|
||||
|
||||
Loading…
Reference in new issue