|
|
|
|
@ -4,10 +4,13 @@ Date: July 5th, 2020
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
from utils.nn_reader import read_csv_nn,
|
|
|
|
|
import os
|
|
|
|
|
os.chdir('/Users/iriley/code/citation-analysis')
|
|
|
|
|
from utils.nn_reader import read_csv_nn
|
|
|
|
|
from utils.nn_reader2 import read_csv_nn_dev
|
|
|
|
|
from sklearn.metrics import confusion_matrix
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
class Feedforward(torch.nn.Module):
|
|
|
|
|
"""
|
|
|
|
|
@ -26,7 +29,7 @@ class Feedforward(torch.nn.Module):
|
|
|
|
|
self.fc2 = torch.nn.Linear(self.hidden_size, self.output_size)
|
|
|
|
|
self.sigmoid = torch.nn.Sigmoid()
|
|
|
|
|
self.softmax = torch.nn.Softmax(dim=1)
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
""" Computes output from a given input x. """
|
|
|
|
|
hidden = self.fc1(x)
|
|
|
|
|
@ -62,29 +65,29 @@ if __name__=='__main__':
|
|
|
|
|
batch_indices = list(zip(list(range(0,l,16))[:-1], list(range(16,l,16))))# + [(l-l%16,l)]
|
|
|
|
|
batch_indices[-1] = (batch_indices[-1][0], l)
|
|
|
|
|
|
|
|
|
|
train model
|
|
|
|
|
# train model
|
|
|
|
|
model.train()
|
|
|
|
|
epochs = 50
|
|
|
|
|
for epoch in range(epochs):
|
|
|
|
|
batch = 0
|
|
|
|
|
for a,b in batch_indices:
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
# forward pass
|
|
|
|
|
y_pred = model(X_train[a:b])
|
|
|
|
|
loss = criterion(y_pred, y_train[a:b])
|
|
|
|
|
#
|
|
|
|
|
print('Epoch {}, batch {}: train loss: {}'.format(epoch, batch, loss.item()))
|
|
|
|
|
# backward pass
|
|
|
|
|
loss.backward()
|
|
|
|
|
optimizer.step()
|
|
|
|
|
batch += 1
|
|
|
|
|
y_pred = model(X_train)
|
|
|
|
|
loss = criterion(y_pred, y_train)
|
|
|
|
|
print('Epoch {}: train loss: {}'.format(epoch, loss.item()))
|
|
|
|
|
# shuffle dataset
|
|
|
|
|
p = torch.randperm(l)
|
|
|
|
|
X_train = X_train[p]
|
|
|
|
|
y_train = y_train[p]
|
|
|
|
|
for a,b in batch_indices:
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
# forward pass
|
|
|
|
|
y_pred = model(X_train[a:b])
|
|
|
|
|
loss = criterion(y_pred, y_train[a:b])
|
|
|
|
|
print('Epoch {}, batch {}: train loss: {}'.format(epoch, batch, loss.item()))
|
|
|
|
|
# backward pass
|
|
|
|
|
loss.backward()
|
|
|
|
|
optimizer.step()
|
|
|
|
|
batch += 1
|
|
|
|
|
# get loss following epoch
|
|
|
|
|
y_pred = model.forward(X_train)
|
|
|
|
|
loss = criterion(y_pred, y_train)
|
|
|
|
|
print('Epoch {}: train loss: {}'.format(epoch, loss.item()))
|
|
|
|
|
# shuffle dataset
|
|
|
|
|
p = torch.randperm(l)
|
|
|
|
|
X_train = X_train[p]
|
|
|
|
|
y_train = y_train[p]
|
|
|
|
|
|
|
|
|
|
model.eval()
|
|
|
|
|
y_pred = model.forward(X_train)
|
|
|
|
|
@ -124,7 +127,7 @@ if __name__=='__main__':
|
|
|
|
|
df['pr1'] = probs[:,1]
|
|
|
|
|
df['pr2'] = probs[:,2]
|
|
|
|
|
df['correct'] = df.preds==df.true
|
|
|
|
|
df.to_csv('/Users/iriley/code/machine_learning/lab2020/preds_ffnn.csv')
|
|
|
|
|
df.to_csv('/Users/iriley/code/machine_learning/lab2020/preds_ffnn.csv', index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|