parent
821ca89dd7
commit
1e470f829e
@ -1,15 +1,121 @@
|
||||
import utils.constants as const
|
||||
|
||||
|
||||
def f1_score(y_true, y_pred, labels, average):
|
||||
return 0
|
||||
if average is None or average == const.AVG_MACRO:
|
||||
pr_list = get_precision_recall(y_true, y_pred, labels)
|
||||
f1_score_list = []
|
||||
f1_sum = 0
|
||||
for item in pr_list:
|
||||
precision = item['precision']
|
||||
recall = item['recall']
|
||||
f_score = calculate_f1_score(precision, recall)
|
||||
f1_sum += f_score
|
||||
if average is None:
|
||||
f1_score_list.append(Result(precision, recall, average, item['label'], f_score))
|
||||
|
||||
if average is None:
|
||||
return f1_score_list
|
||||
elif average == const.AVG_MACRO:
|
||||
return [Result(None, None, average, None, f1_sum / len(pr_list))]
|
||||
|
||||
elif average == const.AVG_MICRO:
|
||||
pass
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_precision_recall(y_true, y_pred, labels=None):
|
||||
"""
|
||||
This method takes Gold Standard Labels and Predicted Labels as arguments
|
||||
and computes Precision and Recall for all the labels(including TP, FP, FN).
|
||||
|
||||
Returns a list of dictionaries with precision, recall, tp, fp, fn
|
||||
|
||||
:param y_true: list of Gold labels
|
||||
:param y_pred: list of predicted labels
|
||||
:param labels: Optional, list of labels for which
|
||||
:return: returns the list of dictionaries with Precision and Recall values
|
||||
[
|
||||
{'label': 'method', 'precision': 0.71, 'recall': 0.71, 'tp': 5, 'fp': 2, 'fn': 2}
|
||||
{'label': 'background', 'precision': 0.56, 'recall': 0.49, 'tp': 3, 'fp': 2, 'fn': 2}
|
||||
]
|
||||
"""
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError('Length of Gold standard labels and Predicted labels must be the same')
|
||||
|
||||
all_labels = False
|
||||
if labels is None or len(labels) is 0:
|
||||
# get the precision and recall for all the labels
|
||||
all_labels = True
|
||||
|
||||
pr_dict = {}
|
||||
|
||||
gold_iter = iter(y_true)
|
||||
pred_iter = iter(y_pred)
|
||||
|
||||
while True:
|
||||
gold_label = next(gold_iter, None)
|
||||
pred_label = next(pred_iter, None)
|
||||
|
||||
# check if the iterator is empty or finished iterating
|
||||
if gold_label is None or pred_label is None:
|
||||
break
|
||||
|
||||
# Add label entry to the dictionary, if not available
|
||||
if gold_label not in pr_dict:
|
||||
pr_dict[gold_label] = {'tp': 0, 'fp': 0, 'fn': 0}
|
||||
|
||||
# Add label entry to the dictionary, if not available
|
||||
if pred_label not in pr_dict:
|
||||
pr_dict[pred_label] = {'tp': 0, 'fp': 0, 'fn': 0}
|
||||
|
||||
if gold_label == pred_label:
|
||||
# predicted correctly
|
||||
pr_dict[gold_label]['tp'] += 1
|
||||
else:
|
||||
# Predicted not in class
|
||||
pr_dict[gold_label]['fn'] += 1
|
||||
# Predicted in class, but Gold is not in class
|
||||
pr_dict[pred_label]['fp'] += 1
|
||||
# end while
|
||||
|
||||
pr_list = []
|
||||
|
||||
if all_labels:
|
||||
labels = list(pr_dict.keys())
|
||||
|
||||
for label in labels:
|
||||
tp = pr_dict[label]['tp']
|
||||
fp = pr_dict[label]['fp']
|
||||
fn = pr_dict[label]['fn']
|
||||
precision = get_precision(tp, fp)
|
||||
recall = get_recall(tp, fn)
|
||||
pr_list.append({'label': label, 'precision': precision, 'recall': recall, 'tp': tp, 'fp': fp, 'fn': fn})
|
||||
|
||||
return pr_list
|
||||
|
||||
|
||||
def get_precision(tp, fp):
|
||||
return tp / (tp + fp)
|
||||
|
||||
|
||||
def get_recall(tp, fn):
|
||||
return tp / (tp + fn)
|
||||
|
||||
|
||||
def calculate_f1_score(precision, recall):
|
||||
return 2 * (precision * recall) / (precision + recall)
|
||||
|
||||
|
||||
class Result:
|
||||
|
||||
def __init__(self, precision, recall, average, label):
|
||||
def __init__(self, precision, recall, average, label, f_score):
|
||||
self.precision = precision
|
||||
self.recall = recall
|
||||
self.average = average
|
||||
self.label = label
|
||||
self.f1_score = 2 * (precision * recall) / (precision + recall)
|
||||
self.f1_score = f_score
|
||||
|
||||
def print_result(self):
|
||||
print('F1 Score :: ',self.f1_score)
|
||||
print('F1 Score :: ', self.f1_score, ' Label :: ', self.label)
|
||||
|
||||
@ -1,2 +1,10 @@
|
||||
from eval.metrics import f1_score
|
||||
import utils.constants as const
|
||||
|
||||
y_true = ['positive', 'positive', 'negative', 'negative', 'positive', 'positive', 'negative', 'negative']
|
||||
y_pred = ['positive', 'negative', 'negative', 'positive', 'positive', 'negative', 'negative', 'negative']
|
||||
|
||||
result_list = f1_score(y_true, y_pred, ['positive', 'negative'], const.AVG_MACRO)
|
||||
|
||||
for result in result_list:
|
||||
result.print_result()
|
||||
@ -0,0 +1,2 @@
|
||||
AVG_MICRO = 'MICRO'
|
||||
AVG_MACRO = 'MACRO'
|
||||
Loading…
Reference in new issue