|
|
|
@ -148,7 +148,7 @@ Our BiLSTM AllenNLP model contains 4 major components:
|
|
|
|
- Dropout
|
|
|
|
- Dropout
|
|
|
|
- Embeddings
|
|
|
|
- Embeddings
|
|
|
|
- All the classes that the Config file uses must register using Python decorators (for example, `@Model.register('bilstm_classifier'`).
|
|
|
|
- All the classes that the Config file uses must register using Python decorators (for example, `@Model.register('bilstm_classifier'`).
|
|
|
|
4. Predictor - [IntentClassificationPredictor](/testing/intent_predictor.py)
|
|
|
|
4. Predictor - [IntentClassificationPredictor](/classifier/intent_predictor.py)
|
|
|
|
- AllenNLP uses `Predictor`, a wrapper around the trained model, for making predictions.
|
|
|
|
- AllenNLP uses `Predictor`, a wrapper around the trained model, for making predictions.
|
|
|
|
- The Predictor uses a pre-trained/saved model and dataset reader to predict new Instances
|
|
|
|
- The Predictor uses a pre-trained/saved model and dataset reader to predict new Instances
|
|
|
|
|
|
|
|
|
|
|
|
|