parent
89f6cfdf88
commit
ce8b6684f7
@ -1,3 +1,31 @@
|
||||
from classifier.linear_model import get_sample_weights_with_features
|
||||
from classifier.linear_model import MultiClassPerceptron
|
||||
from utils.csv import read_csv_file
|
||||
from eval.metrics import f1_score
|
||||
import utils.constants as const
|
||||
import os
|
||||
|
||||
print(get_sample_weights_with_features())
|
||||
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
train_file_path = project_root+'/data/tsv/train.tsv'
|
||||
test_file_path = project_root+'/data/tsv/test.tsv'
|
||||
|
||||
|
||||
X_train_inst = read_csv_file(train_file_path, '\t')
|
||||
|
||||
labels = set([inst.true_label for inst in X_train_inst])
|
||||
|
||||
X_test_inst = read_csv_file(test_file_path, '\t')
|
||||
|
||||
epochs = int(len(X_train_inst)*0.75)
|
||||
|
||||
clf = MultiClassPerceptron(epochs, 1)
|
||||
|
||||
clf.fit(X_train=X_train_inst, labels=list(labels))
|
||||
|
||||
y_test = clf.predict(X_test_inst)
|
||||
|
||||
y_true = [inst.true_label for inst in X_test_inst]
|
||||
|
||||
f1_score_list = f1_score(y_true, y_test, labels, const.AVG_MICRO)
|
||||
|
||||
for result in f1_score_list:
|
||||
result.print_result()
|
||||
|
||||
Loading…
Reference in new issue