|
|
|
@ -18,10 +18,10 @@ labels = set([inst.true_label for inst in X_train_inst])
|
|
|
|
X_test_inst = read_csv_file(test_file_path, '\t')
|
|
|
|
X_test_inst = read_csv_file(test_file_path, '\t')
|
|
|
|
|
|
|
|
|
|
|
|
# number of training iterations
|
|
|
|
# number of training iterations
|
|
|
|
epochs = int(len(X_train_inst)*0.9)
|
|
|
|
epochs = int(len(X_train_inst)*1.5)
|
|
|
|
|
|
|
|
|
|
|
|
# create MultiClassPerceptron classifier object
|
|
|
|
# create MultiClassPerceptron classifier object
|
|
|
|
clf = MultiClassPerceptron(epochs=epochs, learning_rate=0.9, random_state=42)
|
|
|
|
clf = MultiClassPerceptron(epochs=epochs, learning_rate=0.75, random_state=101)
|
|
|
|
|
|
|
|
|
|
|
|
# train the model
|
|
|
|
# train the model
|
|
|
|
clf.fit(X_train=X_train_inst, labels=list(labels))
|
|
|
|
clf.fit(X_train=X_train_inst, labels=list(labels))
|
|
|
|
@ -34,9 +34,9 @@ y_true = [inst.true_label for inst in X_test_inst]
|
|
|
|
|
|
|
|
|
|
|
|
# Model Evaluation
|
|
|
|
# Model Evaluation
|
|
|
|
f1_score_micro = f1_score(y_true, y_test, labels, const.AVG_MICRO)
|
|
|
|
f1_score_micro = f1_score(y_true, y_test, labels, const.AVG_MICRO)
|
|
|
|
# f1_score_macro = f1_score(y_true, y_test, labels, const.AVG_MACRO)
|
|
|
|
f1_score_macro = f1_score(y_true, y_test, labels, const.AVG_MACRO)
|
|
|
|
# f1_score_none = f1_score(y_true, y_test, labels, None)
|
|
|
|
f1_score_none = f1_score(y_true, y_test, labels, None)
|
|
|
|
|
|
|
|
|
|
|
|
# Print F1 Score
|
|
|
|
# Print F1 Score
|
|
|
|
for result in f1_score_micro:
|
|
|
|
for result in f1_score_micro + f1_score_macro + f1_score_none:
|
|
|
|
result.print_result()
|
|
|
|
result.print_result()
|
|
|
|
|