|
|
|
|
@ -8,7 +8,12 @@ from utils.nn_reader import read_csv_nn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Feedforward(torch.nn.Module):
|
|
|
|
|
"""
|
|
|
|
|
Creates and trains a basic feedforward neural network.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, input_size, hidden_size, output_size):
|
|
|
|
|
""" Sets up all basic elements of NN. """
|
|
|
|
|
super(Feedforward, self).__init__()
|
|
|
|
|
self.input_size = input_size
|
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
|
@ -20,6 +25,7 @@ class Feedforward(torch.nn.Module):
|
|
|
|
|
self.softmax = torch.nn.Softmax(dim=1)
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
""" Computes output from a given input x. """
|
|
|
|
|
hidden = self.fc1(x)
|
|
|
|
|
relu = self.relu(hidden)
|
|
|
|
|
output = self.fc2(relu)
|
|
|
|
|
@ -29,6 +35,8 @@ class Feedforward(torch.nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__=='__main__':
|
|
|
|
|
""" Reads in the data, then trains and evaluates the neural network. """
|
|
|
|
|
|
|
|
|
|
X_train, y_train, X_test = read_csv_nn()
|
|
|
|
|
|
|
|
|
|
X_train = torch.FloatTensor(X_train)
|
|
|
|
|
|